生物技术前沿一周纵览(2017年8月4日)

2017-08-04 | 作者: 基因农业网 | 标签: 生物技术前沿一周纵览

 生物技术前沿一周纵览(201784日)

蛋白质翻译后修饰调控植物胁迫反应研究中取得新进展

 

甲基化修饰与一氧化氮(nitric oxide; NO)依赖的亚硝基化修饰是高度保守的蛋白质翻译后修饰。研究人员在亚硝基化蛋白质组学研究中发现拟南芥蛋白质精氨酸甲基转移酶PRMT5被亚硝基化修饰。PRMT5是在高等真核生物中高度保守的一个酶,催化精氨酸双对称性甲基化修饰,其底物包括pre-mRNA剪接体的核心组分。生化和分子遗传学分析表明,在响应非生物胁迫时,NO通过对PRMT5125位半胱氨酸残基(Cys-125)特异的亚硝基化修饰而调控其甲基转移酶活性,即Cys-125PR  MT5感受NO信号必需。PRMT5甲基转移酶中Cys-125的亚硝基化修饰增强了植物体内精氨酸双对称性甲基化修饰的水平,介导胁迫相关基因pre-mRNA的正常剪切,因而增强了植物对胁迫的耐受性。研究发现NO介导的蛋白质亚硝基化修饰与蛋白质甲基化通路互作,从而协调植物拮抗非生物胁迫的分子机制。(Molecular Cell

 

 

CRISPR-Cas系统切割RNA研究获重要进展

 

几乎所有的古菌和约50%的细菌都具有CRISPR-Cas系统,用以抵抗病毒和质粒的侵染。研究人员利用X-ray晶体学的方法成功解析了LbuCas13a-crRNA-target RNA的三元复合物结构(3.08Å)。通过冷冻电镜技术,获得了3.2Å LbuCas13a-crRNA的二元复合物结构。结构显示,Cas13a具有RECNUC两个叶片,其中NUC叶片包含两个HEPN结构域、Helical-2结构域以及连接两个HEPN结构域的连接结构域,两个HEPN结构域组成了Cas13a切割target RNA的活性区域。crRNA识别序列互补的目的RNA,并与之结合形成双链RNA并被NUC叶片包围  时,双链RNA的形成引起crRNACas13a蛋白的构象变化,促使两个HEPN结构域相互靠近,进而激活Cas13a蛋白。研究人员通过结构和功能研究证明,由crRNAtarget RNA激活的Cas13a能切割任意单链的RNA。该研究成功解析了Leptotrichia buccalis (Lbu)细菌中Cas13acrRNA (CRISPR-RNA)及其target RNA三元复合物3.08Å的晶体结构、Cas13acrRNA二元复合物3.2Å的电镜结构。研究结果证实,target RNA的结合导致LbuCas13a的两个发挥RNA干扰功能的HEPN结构域发生构象变化,从而激发LbuCas13a非特异性地切割任意单链RNA的酶切活性。该成果为研究Cas13a发挥RNA酶活性的分子机制提供了重要的结构生物学基础。(Cell

 

 
科学家破解GPCR信号转导的磷酸化密码

 

GPCR信号通路需要“开”与“关”来调节,其中“关”的信号就是由GPCR磷酸化密码来决定的。鉴定与解释GPCR磷酸化密码是当今细胞信号传导领域最重要的一个科学问题。GPCR是目前最成功的药物靶标,迄今40%左右的上市药物是以GPCR为靶点。GPCR作为细胞信号转导的“信号兵”,是通过下游G蛋白和阻遏蛋白两条主要的信号通路转导跨膜信号。当受到外界信号刺激,GPCR激活G蛋白调节第二信使产生,进而“开放”下游信号传导。为了“关闭”这一信号,GPCR激酶(GRK)将GPCR尾部磷酸化。GPCR尾部一旦被磷酸化,就会激活阻遏蛋白并与之形成紧密结合复合物,进而介导信号“关闭”。因此,阻遏蛋白与GPCR的结合是协调整合GPCR下游信号网络的关键,而GPCR的尾部磷酸化则是破解GPCR招募并结合阻遏蛋白难题的关键密码。(Cell

 

 

WRKY蛋白通过赤霉素途径调控植物衰老进程

 

衰老是一个受内外因素共同调控的复杂生物学过程,是包括植物在内的大多数生物体在发育过程中必然经历的一个阶段。研究发现拟南芥WRKY45是一个衰老相关基因,其表型分析发现,WRKY45突变能延缓植物衰老进程,而其过表达则显著促进植物衰老进程。基因表达和染色质免疫共沉淀分析表明,WRKY45通过直接调控一系列衰老相关基因的表达来调控植物衰老过程。进一步研究发现,WRKY45能与RGL1蛋白在细胞核内相互作用形成复合物,RGL1是赤霉素信号转导途径中的转录抑制蛋白。通过表型分析发现,RGL1过表达能显著延缓植物衰老,而赤霉素信号转导途径中的转录抑制蛋白五突变体della则表现出衰老加速的表型。通过外源喷施GA可以显著促进植物衰老进程,而赤霉素合成突变体ga1和赤霉素受体三突变体gid1agid1bgid1c则表现出明显衰老延缓的表型。通过遗传杂交实验证实,WRKY45过表达植物中提前衰老的表型可以部分地被RGL1过表达所推迟,同时通过体外实验和染色质免疫共沉淀分析表明RGL1可以抑制WRKY45对下游靶基因的直接调控。(Molecular Plant

 

破译环状RNA调控猪产肉性状形成分子机制

 

我国是世界上最大的生猪养殖和猪肉消费国,猪产肉性状的改良一直是猪育种界最重要的研究课题之一。猪产肉性状形成分子机制极其复杂,受miRNAlncRNAcircRNA等多种RNA分子及其多维网络互作调控。circRNA是区别于传统线性RNA的一类新型RNA分子,具有闭合环状结构,在许多生物学过程发挥重要调控作用。研究者从猪脂肪、心肌和肝等9种不同组织以及三个发育阶段的骨骼肌中,系统鉴定5934个环状RNA,分子特征分析表明猪环状RNA表达具有高度的时空特异性,与小鼠和人等物种具有较强的保守性;30%以上的环状RNA作为miRNAsponges对基因表达发挥重要调控作用;发现数百条骨骼肌中特异性丰富表达以及产肉性状相关环状RNA分子。进一步的功能分析表明:在出生后0-30天,circRNA主要调控骨骼肌的生长发育和肌纤维类型转换;30-240天时,circRNA主要调控骨骼肌糖代谢和钙离子信号。最后,研究人员构建了circRNA-miRNA-mRNA多维调控网络和环状RNA数据库。据悉,这是农业动物首张环状RNA的时空图谱和首个数据库。(DNA research

 

 

水稻条纹病毒与介体昆虫互作领域取得新成果

 

水稻条纹病毒(RSV)是一种虫媒纤细属病毒,主要由介体昆虫灰飞虱以持久、增殖型方式传播,导致东南亚水稻等农作物严重减产。研究发现,RSV的衣壳蛋白CP竞争性结合灰飞虱的G蛋白通路抑制因子IIGPS2),减弱了GPS2JNK激活复合物的抑制作用,从而提高了JNK的磷酸化水平。同时,病毒还提高了JNK信号通路上游的肿瘤坏死因子TNF-α的表达,降低了GPS2的表达。JNK磷酸化水平的提高增加了RSV在昆虫体内的增殖,而通过干扰JNK基因的表达或使用JNK激活的抑制剂,RSV在昆虫体内的增殖会受到抑制,并延缓植物的发病。这一研究结果揭示了JNK信号通路在病毒复制过程中的关键作用,为今后控制RSV的传播提供了新思路。(eLife)

 

 

植物叶片温度研究获新进展

 

随着全球变暖,植物的热适应成为人们关注的热点之一。研究人员以种植在相同环境下的20种元江干热河谷冠层优势植物和18种热带雨林冠层优势植物为研究对象,利用红外热像仪对植物叶片的温度进行研究,并摸索出了“三温法”(叶片温度-无蒸腾叶片温度-参考叶片温度),成功对叶片物理温度效应和蒸腾温度效应进行了原位测量和分离。研究发现,相同环境下,元江干热河谷地区的植物叶片温度普遍低于热带雨林植物;干热河谷地区的植物叶片较小,反射率较高,吸收率较小,总的物理降温效果优于热带雨林植物。水分缺乏的时候,物理降温在一定程度上缓解了高温对叶片的胁迫;另一方面,干热河谷地区的植物蒸腾速率普遍高于热带雨林植物,蒸腾降温较热带雨林植物高,在叶片解剖结构上也表现出更大的叶脉密度和气孔面积指数(气孔长度×气孔数量)。即使在雨季,元江干热河谷地区的温度也可能超过40°C,高效的蒸腾降温保证了光合作用的顺利进行,使这些植物以更高的光合速率尽可能多地合成干物质以弥补生长季较短的不足。(Functional Ecology  

null

来源:

相关文章