生物技术前沿一周纵览(2017年8月18日)

2017-08-18 | 作者: 基因农业网 | 标签: 生物技术前沿一周纵览

 生物技术前沿一周纵览(2017818日)

小麦穗型调控分子模块解析取得新进展

 

小麦是世界上最重要的粮食作物之一,在我国粮食安全中发挥着重要作用。研究人员利用前人筛选出的我国小麦微核心种质,通过转录组关联分析和基因共表达网络分析的策略研究了幼穗发育的基因表达调控网络,并验证了其中的关键因子在穗粒数调控中的作用。研究结果得到了多个与穗粒数相关的核心共表达模块。研究人员对其中10个基因进行了过表达分析,发现过表达基因TaTFL1可以延长幼穗分化时间,增加小穗数、小花数和穗粒数;过表达基因TaPAP2, TaVRS1可以缩短幼穗分化时间,减少小穗数、小花数和穗粒数。以上研究结果为研究人员进一步解析小麦穗发育的遗传调控提供了理论基础,并对有效利用与穗粒数相关的分子模块进行了初步技术验证。(Plant Physiology)

 

 

研究揭示叶片低光光合效率与生物产量的关系

 

改善冠层光合效率是提高作物产量的重要途径。冠层光合效率由三方面决定,包括叶面积指数、冠层形态结构和叶片光合特征。研究利用基因组遗传力(SNP-based Heritability)结合2.3M全基因组覆盖的SNP变异信息,证明低光光合效率(Alow)具有高度遗传性;进一步为量化低光光合效率与生物量的关系,本研究结合线性回归模型(LRMs)和逐步特征选择(Feature selection)方法,发现Alow在不同地点和组合的数据集中均表现出与生物量有高度相关性。同时,在11个当代商业化水稻品种中,Alow表现出很大变异,说明在人工驯化过程中,Alow未受到强烈选择。该项研究首次揭示了叶片低光光合效率与生物产量的关系,这对未来提高水稻产量提供了全新改造靶标。(Plant Physiology

 

 
破译植物组蛋白特有的修饰位点

 

组蛋白包含着生命个体生长、发育的信息,这些信息通过组蛋白上的不同修饰位点以及不同组蛋白变体来完成功能。与动物不同,植物的个体生命始于一粒种子,处于未分化的状态。如果组蛋白修饰包含了生物发育过程的信息,那么动、植物中或许存在组蛋白上特异的修饰位点,并调控着各自特有的生长发育进程。研究发现拟南芥的磷酸激酶MUT9P-LIKE-KINASE (MLK4)能够磷酸化组蛋白H2A95位丝氨酸,该丝氨酸位点仅存在于部分藻类、以及陆生植物的苔藓、蕨类、祼子植物和被子植物中,而在酵母、果蝇、或哺乳动物(人、小鼠)中没有发现该位点,表明是植物中特异的组蛋白位点。(The Plant Cell




植物基因组编辑研究综述

 

序列特异性核酸酶使得基因组编辑成为可能,快速推动了基础和应用生物学的发展。CRISPR-Cas9系统自出现以来,作为可转化植物的基因组编辑工具已得到广泛应用。植物中进行精准基因组编辑的需求极其迫切,尤其是对于那些难以转化的物种。目前,新开发出来的Cas9变体、新型RNA导向的核酸酶、碱基编辑系统和无DNACRISPR-Cas9递送方法都为植物基因组工程提供了前所未有的机遇。研究人员最近发表文章综述了植物基因组编辑的现状,重点关注由于植物基因组编辑的自身特点)所带来的特殊挑战和机遇,并介绍了新近发展出的基因组编辑工具、方法及其在植物中潜在的应用。文章最后还展望了植物基因组编辑的前景和未来方向。Nature Plants

 

 

科学家发现RNA甲基化调控精子发生新机制

 

研究团队首先利用CRISPR-Cas9技术构建了生殖细胞中条件性敲除Mettl3的小鼠,揭示了Mettl3条件性敲除小鼠的雄性不育和睾丸变小的表型,进一步研究表明Mettl3敲除导致小鼠睾丸精原细胞分化异常,减数分裂起始受阻。在获得Mettl3敲除小鼠不育表型之后,发现Mettl3缺失导致精子发生(包括精原干细胞维持、分化和减数分裂等)相关基因的表达改变。结合单碱基分辨率的m6A-miCLIP测序发现,Mettl3介导的m6A修饰调控精子发生相关基因的可变剪接,从而导致精子发生过程异常。

该合作研究团队在前期合作研究中发现了miRNA介导的RNA甲基化修饰m6A甲基化位点选择性机制(Chen et al. Cell Stem Cell 2015),上述Mettl3介导的m6A调控精原干细胞分化和减数分裂起始机制的阐明,为进一步研究RNA甲基化调控的生物功能和RNA表观遗传提供依据,为研究与正常生理或异常病理生命活动关联分子机理提供新的表观调控研究方向。Cell Research

 

Tigliane类天然产物研究取得进展

 

大戟科和瑞香科植物中广泛存在的Tigliane类二萜是一类具有独特5/7/6/3四环骨架的天然药物。研究人员对大戟属植物蒿状大戟(Euphorbia dracunculoides)的研究,新发现了一个具有新型碳骨架的Tigliane类二萜,它具有6/6/3-三环合并2-甲基-2-环戊烯酮的内酯结构。研究通过广泛的NMR数据分析、ECD计算实验确定了其精确构型,发现它与蒿状大戟中的一个Tigliane类主要成分3(Tetrahedron, 2015, 71(34), 54845493)有很高的结构相似性,据此,研究组提出了该化合物可能的生源合成机制,主要经由碱催化下的retro-aldol开环,氧化和酯化三个步骤 。据此可能的生源合成机制,研究组开展了化合物1的仿生转化研究,在系列失败的尝试后,研究组意外得到了另一个具有新颖5/5/6/3四环骨架的一降二萜。研究同样通过NMR数据分析、ECD计算及X-ray衍射实验证实了其确切结构。接下来,研究组对化合物2的合成转化机制进行了探索,发现它可能是由前体3在强碱NaH的作用下拔氢形成醛中间体,再经由串联的Michael加成形成5/5/6/3四环母核,最后形成的烯醇中间体与单线态氧发生1,2-环加成,以甲酸的形式失去一个碳原子。其中,关键步骤与氧分子的1,2-环加成由模式醛类化合物与18O2的标记实验进行了验证,填补了此类反应机理提出几十年来缺少直接证明的空白。Organic Letters 

 

 

大豆circRNA种类及功能

 

大豆是一种古老的四倍体,大多数大豆基因是具有多个拷贝的旁系同源基因。研究利用高通量测序技术共鉴定出大豆5372circRNAs,其中约80% 的circRNA是由旁系同源基因产生的旁系同源circRNAs。尽管旁系同源基因序列具有高度同源性,旁系同源基因也可产生不同表达模式的不同的旁系同源circRNAs。数据分析结果显示,2134circRNA经模拟预测后靶向92miRNA circRNAscircRNA异构体在大豆中表现出组织特异性表达模式。基于circRNA宿主基因的功能,大豆circRNAs可能参与许多生物过程,如发育过程,多重生物过程和代谢过程等。 (ResearchGate)

 

 

null

来源:

相关文章